Midterm Semester-2015

Solution 1. Let y(t) be the displacement and v(t) be the velocity of the object at time ¢. Here initial
conditions y(0) = 0 and v(0) = 0. Now the only force guiding the object is gravity. Therefore

do(t)
o =Y (1)
and also
dy(t)

Let f:[0,00] — R be the height of the object above the ground level. Then

f(t) =300 — y(?).

Therefore from (1) and (2), we have

and f(0) = 300.
This is the required IVP.
Using (1) and integrating (3), we have

f(t) t
df(t) = /fgtdt.
300 0

Therefore

1
f(t) =300 — §gt2.

Now f(T) = 0 implies g7? = 600. This is the required equation.
Solution 2 (a) . Let F(z,y(z)) = yly|, y(z0) = yo and G(z, y(z)) = y? +z, y(zo) = yo. Clearly, F and

G are continuous in R2. So by Cauchy Peano theorem for every (x¢,%o) € R?, two IVPs

y = F(z,y(x)),y(z0) = yo

and

y = G(z,y(@)),y(x0) = yo
have a local solution at xg.
(b) Here F(x,y(x)) = yly| is continuous in R? and differential in . Also %—5 = 2|y|, which is bounded
around any bounded neighbourhood of any (xg, o) € R2. This implies that F is Lipschitz in y. So by

Picard Lindelof theorem, for every (zg,yo) € R?, there exists a unique local solution at z.



Similarly, G(x,y(z)) = y3 +  is continuous in R? and differential in 2. Also

oG _ 1
8y By%.

If yo # 0 then any bounded neighbourhood of any ¥y not containing 0, %—S is bounded. So by Picard
Lindelof theorem, for every (zg,yo) € R x R~ {0}, there exists a unique local solution at zq. If yo = 0,
then G is not Lipschitz in y in any neighbourhood around (zg, 0) for any zy € R. So there is no unique
solution in this case.

Solution 3. Suppose p = e) 9(2)d= i an integrating factor for
M(z,y)dz + N(z,y)dy = 0.

Then ~ B
OM(z,y) _ ON(z,y)

Ay ox
where M(z,y) = e/ 990N (z,4), N(z,y) = e/ 929N (2, 1) and z = zy. Now

aMa(g’ v _ uaMgi’y) + pag(z)M(z,y) (4)

and

or M THwI(IN(zy). (5)
Equating (4) and (5), we have
Pt age)M(w.9) = T 4N )

Therefore
OM(z,y) _ ON(z,y)

Jy ox
Ny — Mz

g(z) =

This completes the proof.
Solution 4 (a). It is enough to prove that Wronskian either vanishes for all values of = or it is never

vanishes. Let y;,1 < ¢ < n be the solution of the nth order homogeneous differential equation
v +p1(@)y™ Y + 1@y + pa(a)y =0 (6)

We will conssider only for n = 3. We can rewrite eq. (6) as a first order matrix differential equation.

Defining the vector

Y
Y = y/
y//
Then
dY
— = B(2)Y, 7
= B() (7



where the matrix B(z) is given by

0 1 0
0 0 1

—p3(x) —p2(z) —pi(z)

Now if y;, for 1 <4 < 3 are linearly independent solutions to (6) (for n = 3), then the matrix A, ,

satisfies the first order matrix differential equation,

dAn, n
dx

= B(z2)Y

Now taking derivative of determinant of the matrix A,, ,, we have in term of Wronskian W,

dW
% =W T’]"B(l'),
where TrB(x) = —p1(x), trace of the matrix B(z). Integrating from a to x, we have

W) = W(@exp{ -~ [ p(tyr}

Note that if W(a) # 0, then W(x) # 0 for any . If W(a) = 0, then W(x) = 0 for all . This confirms
our assertion that the Wronskian either vanishes for all values or it is never equal to zero. Similarly, one
can show this for n > 4.

Solution 4 (b). Here we will prove only for n = 2. That is if y; and y are two linearly independent

solutions of the differential equation

y@ + pi(2)y™ + pa(2)y =0 (8)

then any function y, satisfying (8) is a linear combination of y; and y». Suppose y, satisfying (8) is not

a linear combination of y; and yo. Then from Wronskian, we have

W (y1,y2; ) = crexp{ — /pl(t)dt} (9)
W(y1,yg; ) = CQexp{ — /pl(t)dt} (10)
W(y2,yg; ) = 03exp{ — /pl(t)dt} (11)

where c1, ¢y and c3 are arbitrary constants. Now multiplying the above equations ys3,y> and y; respec-

tively and adding we have

xr
YsW (y1, y2; ) + 12 W (Y1, yg: ) + 11 W (Y2, g3 ) = (c1ys + 2y + csy1)Jexp{ — /pl(t)dt}- (12)

We have from the above

c1y3 + caya + c3y1 = 0.



Since y; and yo are linearly independent solutions of (8), and hence W (y1,y2; ) # 0. Therefore ¢; # 0.
This implies
C2 C3
Ys = ——Y2— —Y1.
C1 C1
Hence our assumption is false. This completes the proof.
S " !
Solution 5. Let y = > a,z™. Now substituting y ,y and y to the differential equation
n=0

y' —2zy +\y =0,

we have -
Z[(n +2)(n+ Dapsa — (2n — Nay,]z™ = 0.
n=0
Therefore (2 N
n— \a,
=————+— forall n>0.
Gnt2 CESCETI or all n >

If n is even, then

2n—4—=XNap—2 (2n—4—-X)(2n -8 —N)an—4

T - T - D —2)(n—3)
ﬁ(Zn — 4k — /\)ao
=..=5— (13)
Similarly for n is odd,
o - (2n—4—Nap—2 (2n—4—-X)(2n—8— N)a,_4
T -1 (-1 -2)(n-3)
ﬁ (2n — 4k — Nay
_ k=1 (14)

n!

o0
Therefore y = 3 a,z" is a solution with the coefficient a,, is given in (13) and (14).
n=0

[ee]
If a; = 0, then we get y1 = > a,a™, where for even n, a, is given in (13) and a,, = 0 for odd n.
n=0

o0

If ap = 0, then we get y2 = Y a,z™, where for odd n, a, is given in (14) and a,, = 0 for even n. These
n=0

two solutions, y; and ys, are linerly independent.

If one of the solution has to be polynomial, a,, has to be zero except for finite numbers. If A € 2N,
one of the solutions would be a polynomial.

Solution 6(a). In normal form, Bessel’s equation is

W+ (14 2 Ju=o.
We will use the following theorem:
Suppose that ¢ and ¢ are positive functions with ¢ > ¢. Let y be a nontrivial solution of the differential

equation
y +qy=0



and let y be a nontrivial solution of the differential equation

"

g +qy=0.

Then y vanishes at least once between any two successive zeros of .
Ifo<p< % then
1 —4p?

172 > 1

1+

and if p > % then
1 — 4p?
4x2

1+ <1

Now using the above theorem to Bessel’s equation and to y” + y = 0 The assertions follow.

Solution 6(b). We say that a singular point x( for the differential equation
Yy +py +qy=0
is a regular singular point if (z — z,)p(z) and (z — z,)q(x) are analytic at xy. Solution of the form
y=y(z) =2"(ao+ a1z +a.z2+ ),

where ag # 0 and r is any real number, of a differential equation at a regular singular point x( is said
to a Frobenius series solution

For any p > 0, one Frobenius series solution (namely, for larger root of the indicial equation) is
guaranteed.

Solution 6(c). For p = 1, the Bessel’s equation is

22y +ay + (22— 1)y = 0. (15)
o0

Let y = Z anx™™", r is any real number. Substituting v, y/ and y” to (15), we have indicial equation
n=0

r?—1=0.

The roots of the indicial equation are r; = 1 and ro = —1. Also they differ by a positive integer. The

recurrence relation is

Gp—2
p=——nZ 16
“ (nt1)?_1 (16)
for n = 2,3,... Also note that for r; = 1, a; = 0 and hence all the odd coefficients, i.e. as,41 = 0 for
n=1,2,.... Therefore from (16),
A2m—2 ao
m=—"T"—">—5 - = —]_ m_______F
2 a1 Y s 1l

form=1,2,3,....



Therefore the Frobenius series solution of the differential equation is

Yy = aox[l + i 227"((771_1‘27711)!771!362”1}

m=1

for x > 0.



