
Midterm Semester-2015

Solution 1. Let y(t) be the displacement and v(t) be the velocity of the object at time t. Here initial

conditions y(0) = 0 and v(0) = 0. Now the only force guiding the object is gravity. Therefore

dv(t)

dt
= g (1)

and also

dy(t)

dt
= v(t). (2)

Let f : [0,∞]→ R be the height of the object above the ground level. Then

f(t) = 300− y(t).

Therefore from (1) and (2), we have

df(t)

dt
= −dy(t)

dt
= −v(t), (3)

d2f(t)

dt2
= −dv(t)

dt
= −g

and f(0) = 300.

This is the required IVP.

Using (1) and integrating (3), we have

f(t)∫
300

df(t) =

t∫
0

−gtdt.

Therefore

f(t) = 300− 1

2
gt2.

Now f(T ) = 0 implies gT 2 = 600. This is the required equation.

Solution 2 (a) . Let F (x, y(x)) = y|y|, y(x0) = y0 and G(x, y(x)) = y
1
3 + x, y(x0) = y0. Clearly, F and

G are continuous in R2. So by Cauchy Peano theorem for every (x0, y0) ∈ R2, two IVPs

y
′

= F (x, y(x)), y(x0) = y0

and

y
′

= G(x, y(x)), y(x0) = y0

have a local solution at x0.

(b) Here F (x, y(x)) = y|y| is continuous in R2 and differential in x. Also ∂F
∂y = 2|y|, which is bounded

around any bounded neighbourhood of any (x0, y0) ∈ R2. This implies that F is Lipschitz in y. So by

Picard Lindelof theorem, for every (x0, y0) ∈ R2, there exists a unique local solution at x0.
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Similarly, G(x, y(x)) = y
1
3 + x is continuous in R2 and differential in x. Also

∂G

∂y
=

1

3y
2
3

.

If y0 6= 0 then any bounded neighbourhood of any y0 not containing 0, ∂G
∂y is bounded. So by Picard

Lindelof theorem, for every (x0, y0) ∈ R× Rr {0}, there exists a unique local solution at x0. If y0 = 0,

then G is not Lipschitz in y in any neighbourhood around (x0, 0) for any x0 ∈ R. So there is no unique

solution in this case.

Solution 3. Suppose µ = e
∫
g(z)dz is an integrating factor for

M(x, y)dx+N(x, y)dy = 0.

Then
∂M̃(x, y)

∂y
=
∂Ñ(x, y)

∂x
,

where M̃(x, y) = e
∫
g(z)dzM(x, y), Ñ(x, y) = e

∫
g(z)dzN(x, y) and z = xy. Now

∂M̃(x, y)

∂y
= µ

∂M(x, y)

∂y
+ µxg(z)M(x, y) (4)

and

∂Ñ(x, y)

∂x
= µ

∂N(x, y)

∂x
+ µyg(z)N(x, y). (5)

Equating (4) and (5), we have

∂M(x, y)

∂y
+ xg(z)M(x, y) =

∂N(x, y)

∂x
+ yg(z)N(x, y).

Therefore

g(z) =

∂M(x,y)
∂y − ∂N(x,y)

∂x

Ny −Mx
.

This completes the proof.

Solution 4 (a). It is enough to prove that Wronskian either vanishes for all values of x or it is never

vanishes. Let yi, 1 ≤ i ≤ n be the solution of the nth order homogeneous differential equation

y(n) + p1(x)y(n−1) + . . .+ pn−1(x)y(1) + pn(x)y = 0 (6)

We will conssider only for n = 3. We can rewrite eq. (6) as a first order matrix differential equation.

Defining the vector

Y =

 y

y
′

y
′′


Then

dY

dx
= B(x)Y, (7)
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where the matrix B(x) is given by  0 1 0

0 0 1

−p3(x) −p2(x) −p1(x)


Now if yi, for 1 ≤ i ≤ 3 are linearly independent solutions to (6) (for n = 3), then the matrix An,n

satisfies the first order matrix differential equation,

dAn,n

dx
= B(x)Y

Now taking derivative of determinant of the matrix An,n, we have in term of Wronskian W,

dW

dx
= W TrB(x),

where TrB(x) = −p1(x), trace of the matrix B(x). Integrating from a to x, we have

W(x) = W(a)exp
{
−

x∫
a

p1(t)dt
}

Note that if W(a) 6= 0, then W(x) 6= 0 for any x. If W(a) = 0, then W(x) = 0 for all x. This confirms

our assertion that the Wronskian either vanishes for all values or it is never equal to zero. Similarly, one

can show this for n ≥ 4.

Solution 4 (b). Here we will prove only for n = 2. That is if y1 and y2 are two linearly independent

solutions of the differential equation

y(2) + p1(x)y(1) + p2(x)y = 0 (8)

then any function yg satisfying (8) is a linear combination of y1 and y2. Suppose yg satisfying (8) is not

a linear combination of y1 and y2. Then from Wronskian, we have

W(y1, y2;x) = c1exp
{
−

x∫
p1(t)dt

}
(9)

W(y1, yg;x) = c2exp
{
−

x∫
p1(t)dt

}
(10)

W(y2, yg;x) = c3exp
{
−

x∫
p1(t)dt

}
(11)

where c1, c2 and c3 are arbitrary constants. Now multiplying the above equations y3, y2 and y1 respec-

tively and adding we have

y3W(y1, y2;x) + y2W(y1, yg;x) + y1W(y2, yg;x) = (c1y3 + c2y2 + c3y1)exp
{
−

x∫
p1(t)dt

}
. (12)

We have from the above

c1y3 + c2y2 + c3y1 = 0.
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Since y1 and y2 are linearly independent solutions of (8), and hence W(y1, y2;x) 6= 0. Therefore c1 6= 0.

This implies

y3 = −c2
c1
y2 −

c3
c1
y1.

Hence our assumption is false. This completes the proof.

Solution 5. Let y =
∞∑

n=0
anx

n. Now substituting y
′′
, y
′

and y to the differential equation

y
′′
− 2xy

′
+ λy = 0,

we have
∞∑

n=0

[(n+ 2)(n+ 1)an+2 − (2n− λ)an]xn = 0.

Therefore

an+2 =
(2n− λ)an

(n+ 1)(n+ 2)
, for all n ≥ 0.

If n is even, then

an =
(2n− 4− λ)an−2

(n)(n− 1)
=

(2n− 4− λ)(2n− 8− λ)an−4
(n)(n− 1)(n− 2)(n− 3)

= . . . =

n
2∏

k=1

(2n− 4k − λ)a0

n!
. (13)

Similarly for n is odd,

an =
(2n− 4− λ)an−2

(n)(n− 1)
=

(2n− 4− λ)(2n− 8− λ)an−4
(n)(n− 1)(n− 2)(n− 3)

= . . . =

n−1
2∏

k=1

(2n− 4k − λ)a1

n!
. (14)

Therefore y =
∞∑

n=0
anx

n is a solution with the coefficient an is given in (13) and (14).

If a1 = 0, then we get y1 =
∞∑

n=0
anx

n, where for even n, an is given in (13) and an = 0 for odd n.

If a0 = 0, then we get y2 =
∞∑

n=0
anx

n, where for odd n, an is given in (14) and an = 0 for even n. These

two solutions, y1 and y2, are linerly independent.

If one of the solution has to be polynomial, an has to be zero except for finite numbers. If λ ∈ 2N,

one of the solutions would be a polynomial.

Solution 6(a). In normal form, Bessel’s equation is

u
′′

+
(

1 + 1−4p2

4x2

)
u = 0.

We will use the following theorem:

Suppose that q and q̃ are positive functions with q > q̃. Let y be a nontrivial solution of the differential

equation

y
′′

+ qy = 0
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and let ỹ be a nontrivial solution of the differential equation

ỹ
′′

+ q̃ỹ = O.

Then y vanishes at least once between any two successive zeros of ỹ.

If 0 < p < 1
2 then

1 +
1− 4p2

4x2
> 1

and if p > 1
2 then

1 +
1− 4p2

4x2
< 1.

Now using the above theorem to Bessel’s equation and to y
′′

+ y = 0 The assertions follow.

Solution 6(b). We say that a singular point x0 for the differential equation

y
′′

+ py′ + qy = 0

is a regular singular point if (x− xo)p(x) and (x− xo)q(x) are analytic at x0. Solution of the form

y = y(x) = xr(ao + a1x+ azx2 + · · · ),

where a0 6= 0 and r is any real number, of a differential equation at a regular singular point x0 is said

to a Frobenius series solution

For any p ≥ 0, one Frobenius series solution (namely, for larger root of the indicial equation) is

guaranteed.

Solution 6(c). For p = 1, the Bessel’s equation is

x2y
′′

+ xy′ + (x2 − 1)y = 0. (15)

Let y =

∞∑
n=0

anx
n+r, r is any real number. Substituting y, y

′
and y

′′
to (15), we have indicial equation

r2 − 1 = 0.

The roots of the indicial equation are r1 = 1 and r2 = −1. Also they differ by a positive integer. The

recurrence relation is

an = − an−2
(n+ 1)2 − 1

(16)

for n = 2, 3, . . . Also note that for r1 = 1, a1 = 0 and hence all the odd coefficients, i.e. a2n+1 = 0 for

n = 1, 2, . . .. Therefore from (16),

a2m = − a2m−2
(m+ 1)2 − 1

= (−1)m
a0

22m(m+ 1)!m!

for m = 1, 2, 3, . . ..
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Therefore the Frobenius series solution of the differential equation is

y1 = a0x
[
1 +

∞∑
m=1

(−1)m

22m(m+ 1)!m!
x2m

]
for x > 0.
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